8 research outputs found

    Asymptotics, Geometry, and Soft Matter

    Get PDF
    This dissertation is concerned with two problems that lie at the interface of soft-matter physics, geometry, and asymptotic analysis, but otherwise have no bearing on one another. In the first problem, I consider the equilibrium thermal fluctuations of deformable mechanical frameworks. These frameworks have served as highly idealized representations of mechanical structures that underlie a plethora of soft, few-body systems at the submicron scale such as colloidal clusters and DNA origami. When the holonomic constraints in a framework cease to be linearly independent, singularities can appear in its configuration space, where it becomes energetically softer. Consequently, the framework\u27s free-energy landscape becomes dominated by the neighborhoods of points corresponding to these singularities. In the second problem, I study the localization of elastic waves in thin elastic structures with spatially varying curvature profiles, using a curved rod and a uniaxially-curved shell as concrete examples. Waves propagating on such structures have multiple components owing to the curvature-mediated coupling of the tangential and normal components of the displacement field. Here, using the semiclassical approximation, I show that these waves form localized, bound states around points where the absolute curvature of the structure has a minimum. Both these problems exemplify the subtle interplay between the mechanical properties of soft materials and their geometry, which further sets the stage for many interesting consequences

    On the Applicability of Low-Dimensional Models for Convective Flow Reversals at Extreme Prandtl Numbers

    Full text link
    Constructing simpler models, either stochastic or deterministic, for exploring the phenomenon of flow reversals in fluid systems is in vogue across disciplines. Using direct numerical simulations and nonlinear time series analysis, we illustrate that the basic nature of flow reversals in convecting fluids can depend on the dimensionless parameters describing the system. Specifically, we find evidence of low-dimensional determinism in flow reversals occurring at zero Prandtl number, whereas we fail to find such signatures for reversals at infinite Prandtl number. Thus, even in a single system, as one varies the system parameters, one can encounter reversals that are fundamentally different in nature. Consequently, we conclude that a single general low-dimensional deterministic model cannot faithfully characterize flow reversals for every set of parameter values.Comment: 9 pages, 4 figure

    Synchronizing noisy nonidentical oscillators by transient uncoupling

    Full text link
    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them -- a phenomenon termed "generalized synchronization." Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling

    Transient Uncoupling Induces Synchronization

    Full text link
    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. Although, for many standard systems, coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme thus opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.Comment: 5 pages, 6 figure

    Thermal Fluctuations of Singular Bar-Joint Mechanisms

    Full text link
    A bar-joint mechanism is a deformable assembly of freely rotating joints connected by stiff bars. Here we develop a formalism to study the equilibration of common bar-joint mechanisms with a thermal bath. When the constraints in a mechanism cease to be linearly independent, singularities can appear in its shape space, which is the part of its configuration space after discarding rigid motions. We show that the free-energy landscape of a mechanism at low temperatures is dominated by the neighborhoods of points that correspond to these singularities. We consider two example mechanisms with shape-space singularities and find that they are more likely to be found in configurations near the singularities than others. These findings are expected to help improve the design of nanomechanisms for various applications.Comment: 6 + 21 pages; 3 + 7 figure
    corecore